direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

ZeroOps - A Self-Healing Platform

Telecommunication service and network operators are confronted with rising expectations towards availability, performance, and guaranteed QoS. The complexity of modern IT infrastructures has increased to a point, where traditional IT administration procedures fail to holistically ensure the dependability of the systems.

At the same time, various approaches around artificial intelligence (AI) are currently revolutionizing domains like medicine, manufacturing, or autonomous driving. This strongly motivates the utilization of AI for the autonomous management of highly complex IT systems (AIOps).

Telecommunication service and network operators are confronted with rising expectations towards availability, performance, and guaranteed QoS. The complexity of modern IT infrastructures has increased to a point, where traditional IT administration procedures fail to holistically ensure the dependability of the systems.

At the same time, various approaches around artificial intelligence (AI) are currently revolutionizing domains like medicine, manufacturing, or autonomous driving. This strongly motivates the utilization of AI for the autonomous management of highly complex IT systems (AIOps).

The vision for ZerOps is to provide a scalable platform for monitoring, hierarchical in-place data analytics, and predictive system remediation. The term in-place refers to the explicit design goal to analyze collected data directly at the data source through streaming-based machine learning (ML) algorithms. ZerOps can be integrated in existing cloud infrastructures with. The second major design goal of ZerOps is a modular and flexible data analysis pipeline that can be assembled from multiple interchangeable elements. This allows customization to different infrastructure use cases, but also supports easy-to-use experimentation with new algorithmic approaches for research purposes. Due to the decentralized deployment, the data analysis is co-located with regular system parts. Therefore, its resource usage has to be limited to a certain percentage of the available resources. Furthermore, ZerOps incorporates streaming analytics as well as event aggregations to determine anomaly root causes and perform further advanced anomaly situation analyses. By the integration of unsupervised anomaly detection, ZerOps is able to detect unknown problems as well as already known and learned anomalies. A decentralized ML model repository enables transfer learning to overcome cold-start problems for dynamic IT-infrastructure components. ZerOps also supports automatic hyperparameter selection of ML algorithms.

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Ansprechpartner

Anton Gulenko
+49 30 314-25286
Room TEL 1205

Contact

Florian Schmidt
+49 30 314 28306
Room TEL 1205